Optimizing Plate Heat Exchanger Design for Steam Condensate Recovery Systems

Lupi Abdul Malik, Dessy Agustina Sari

Abstract

Condensate water is typically generated as a by-product during the use of steam as a medium for heat transfer. In order to optimize the transfer area, the chemical industry often employs heat exchangers, such as the plate heat exchanger (PHE), which provides flexibility in adjusting the space area for heat transfer. This case study examines the optimization of plate geometry dimensions to enhance the heat transfer process of PHE equipment design. The optimization process involves mathematical equations and a literature review of the design of this type of heat exchanger. Improving the dimensional aspect of the plate geometry results in an increase in the overall heat transfer coefficient (U) and a reduction in the number of design requirements used. The study's estimation results suggest that the PHE design has a limitation on plate dimensions, which should be less than 0.3×0.6 m. Additionally, it is important to consider the pressure drop value, which should not exceed 29.07 kPa. A review of the chemical industry field provided estimated options for plate size and quantity, both of which support the optimization of heat transfer rate and design constraint thresholds. The implementation of the design has been found to enhance the performance of the planning process for recovering steam condensate water.

Keywords

geometric plate; heat transfer area; overall heat transfer cooefficient; plate heat exchanger design; pressure drop.

Full Text:

PDF

References

S. N. Sakharkar, V. R. Kokate, and V. V. Kadam, “Review on condensate heat recovery techniques in steam distribution system,” arkar et al. World Journal of Engineering Research and Technology, vol. 4, no. 2, pp. 314–321, 2018.

M. A. Rodriguez-Cabal, A. Arias Londoño, J. G. Ardila-Marin, L. F. Grisales-Noreña, and A. Castro-Vargas, “Overall heat transfer coefficient optimization in a spiral-plate heat exchanger,” J. Phys.: Conf. Ser., vol. 1671, no. 012012, pp. 1–6, 2020, doi: 10.1088/1742-6596/1671/1/012012.

K. P. Ni’mah, F. Fitriah, and D. A. Sari, “Performance of an air-cooled heat exchanger in a separation unit based on fouling factor and pressure drop,” Reka Buana : Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 8, no. 2, pp. 128–139, 2023, doi: https://doi.org/10.33366/rekabua na.v8i2.4951.

F. Fitriah and D. A. Sari, “Optimization of distillation column reflux ratio for distillate purity and process energy requirements,” International Journal of Basic and Applied Science, vol. 12, no. 2, pp. 72–81, 2023.

R. Y. Naulina, S. J. Nendissa, E. Stiawan, D. M. Nendissa, D. A. Sari, D. Ariyanti, A. B. Sulistyo, A. N. Siahaya, H. Rahim, A. Rosmawati, M. I. Khurniyati, N. Fatnah, A. Fahmi., Kimia industri. Bandung: Penerbit Widina Media Utama, 2023. [Online]. Available: https://repository.penerbitwidina.com/media/publications/563628-kimia-industri-64fe6020.pdf

J. M. Coulson, J. F. Richardson, and R. K. Sinnott, Chemical engineering design, 4. ed., vol. 6th. Amsterdam Heidelberg: Elsevier, 2005.

I. A. Fitria, D. A. Sari, V. P. Fahriani, and M. Djaeni, “Fouling factor penukar panas shell and tube melalui program Heat Transfer Research Inc (HTRI),” Reka Buana: Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 7, no. 2, pp. 104–113, 2022, doi: https://doi.org/10.33366/rekabuana.v7i2.4030.

A. Bhattad, J. Sarkar, and P. Ghosh, “Energetic and exergetic performances of plate heat exchanger using brine-based hybrid nanofluid for milk chilling application,” Heat Transfer Engineering, vol. 41, no. 6–7, pp. 522–535, 2020, doi: 10.1080/01457632.2018.1546770.

A. Jilak, E. Assareh, and M. Nedaei, “Application of a novel multi-objective optimisation method integrated with the artificial neural networks for optimum design of a plate heat exchanger,” Australian Journal of Mechanical Engineering, vol. 18, no. 1, pp. 1–15, 2020, doi: 10.1080/14484846.2017.1359897.

O. Arsenyeva, J. J. Klemeš, P. Kapustenko, O. Fedorenko, S. Kusakov, and D. Kobylnik, “Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process,” Energy, vol. 233, no. 121186, pp. 1–10, 2021, doi: 10.1016/j.energy.2021.121186.

F. A. S. Mota, M. A. S. S. Ravagnani, and E. P. Carvalho, “Optimal design of plate heat exchangers,” Applied Thermal Engineering, vol. 63, pp. 33–39, 2014, doi: 10.1016/j.applthermaleng.2013.09.046.

W.-H. Chen, Y.-W. Li, M.-H. Chang, C.-C. Chueh, V. Ashokkumar, and L. H. Saw, “Operation and multi-objective design optimization of a plate heat exchanger with zigzag flow channel geometry,” Energies, vol. 15, no. 8205, pp. 1–22, 2022, doi: 10.3390/en15218205.

O. P. Arsenyeva, L. L. Tovazhnyansky, P. O. Kapustenko, and G. L. Khavin, “Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries,” Energy, vol. 36, pp. 4588–4598, 2011, doi: 10.1016/j.energy.2011.03.022.

N. Rohmah, G. Pikra, A. J. Purwanto, and R. I. Pramana, “The effect of plate spacing in plate heat exchanger design as a condenser in organic rankine cycle for low temperature heat source,” Energy Procedia, vol. 68, pp. 87–96, 2015, doi: 10.1016/j.egypro.2015.03.236.

S. A. Sutandyo and P. Prabowo, “Studi numerik perpindahan panas pada corrugated plate heat exchanger chevron type dengan variasi corrugation angle pada aliran turbulen,” Jurnal Teknik ITS, vol. 10, no. 2, pp. B238–B243, 2021, doi: 10.12962/j23373539.v10i2.72680.

K. Xu, K. Qin, H. Wu, and R. Smith, “A new computer-aided optimization-based method for the design of single multi-pass plate heat exchangers,” Processes, vol. 10, no. 767, pp. 1–16, 2022, doi: 10.3390/pr10040767.

S. Kakaç, H. Liu, and A. Pramuanjaroenkij, Heat exchangers: selection, rating, and thermal design, 4th ed. Boca Raton: CRC Press, 2020. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9780429469862/heat-exchangers-sadik-kaka%C3%A7-anchasa-pramuanjaroenkij-hongtan-liu

R. K. Shah and D. P. Sekulić, Fundamentals of heat exchanger design. Hoboken, NJ: John Wiley & Sons, 2003.

A. K. Coker and E. E. Ludwig, Ludwig’s applied process design for chemical and petrochemical plants, 4th ed., vol. 3. Amsterdam ; Boston: Elsevier Gulf Professional Pub, 2007.

T. Turbin, B. Institut, and R. Manglik, Plate heat exchangers: design, applications and performance. Southampton, Boston: WIT Press, 2007. [Online]. Available: https://books.google.co.id/books/about/Plate_Heat_Exchangers.html?id=P3gTR8YHLHgC&redir_esc=y

K. Thulukkanam, Heat exchanger design handbook, 2nd ed. Boca Raton: CRC Press, 2013. [Online]. Available: https://books.google.co.id/books?id=G52EfFF4uQYC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false

C. Gulenoglu, F. Akturk, S. Aradag, N. Sezer Uzol, and S. Kakac, “Experimental comparison of performances of three different plates for gasketed plate heat exchangers,” International Journal of Thermal Sciences, vol. 75, pp. 249–256, 2014, doi: 10.1016/j.ijthermalsci.2013.06.012.

B. D. Raja, R. L. Jhala, and V. Patel, “Thermal-hydraulic optimization of plate heat exchanger: A multi-objective approach,” International Journal of Thermal Sciences, vol. 124, pp. 522–535, 2018, doi: 10.1016/j.ijthermalsci.2017.10.035.

M. Imran, N. A. Pambudi, and M. Farooq, “Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm,” Case Studies in Thermal Engineering, vol. 10, pp. 570–578, 2017, doi: 10.1016/j.csite.2017.10.003.

R. Mancini, J. K. Jensen, L. Reinholdt, W. B. Markussen, and B. Elmegaard, “Design optimization of plate heat exchanger absorbers and desorbers for hybrid absorption compression heat pumps,” in Proceedings of ECOS 2019, Wroclaw, Poland, 2019, pp. 1–14. [Online]. Available: https://backend.orbit.dtu.dk/ws/portalfiles/portal/189828355/Paper_ECOS_Roberta_Revised.pdf

H. Najafi and B. Najafi, “Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm,” Heat and Mass Transfer, vol. 46, no. 6, pp. 639–647, 2010, doi: 10.1007/s00231-010-0612-8.

A. K. Yahya, R. Romigo, P. Rahayu, A. P. Aini, and H. Ulia, “Evaluasi kinerja plate heat exchanger di refinery plant industri minyak goreng,” SAINTI: Majalah Ilmiah Teknologi Industri, vol. 20, no. 1, pp. 1–9, 2023, doi: http://dx.doi.org/10.52759/sainti.v20i1.203.

M. I. Kamil and D. A. Sari, “Komparasi desain alat penukar panas tipe air-cooled,” Jurnal Teknologi, vol. 16, no. 2, pp. 180–186, 2023, doi: 10.34151/jurtek.v16i2.4512.

S. K. Ogbonnaya, O. O. Ajayi, O. D. Ohijeagbon, and M. Ogbonnaya, “Modeling and analysis of fouling behaviour in plate and frame heat exchanger,” Covenant Journal of Engineering Technology, vol. 2, no. 2, pp. 72–90, 2018.

V. S. Ulfa, H. D. Kharisma, and D. A. Sari, “Optimasi akademisi dan mata kuliah teknik kimia melalui peran praktisi industri,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Tangerang: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1379–1383. doi: 10.31219/osf.io/uf45p.

M. P. Sutardi, M. I. Fardiansyah, F. Fauzia, and D. A. Sari, “Program simulasi Aspen Hysis bagi mahasiswa teknik kimia di semester awal,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Tangerang: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1370–1373. doi: 10.31219/osf.io/e3t72.

R. Purnamasari, S. Malani, M. D. Savitri, R. N. Lestari, A. Salsabilla, and D. A. Sari, “Pembelajaran tatap muka dan daring terhadap perkuliahan mahasiswa teknik kimia,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, 2020, pp. 1364–1369.

Abstract - Print this article - Indexing metadata - How to cite item - Finding References - Email this article (Login required) - Email the author (Login required)

Refbacks

  • There are currently no refbacks.