Paper Waste Hydrolysis with Stepwise Sulfuric Acid Catalyst
Abstract
The need for paper results in a lot of paper waste. Paper waste, which is lignocellulosic, can be hydrolyzed using an acid catalyst to produce various cellulose degradation products. In this study, the effect of the sulfuric acid catalyst addition method on the waste paper hydrolysis process was investigated. The addition of the catalyst was carried out in three types. The Type-1 method was sulfuric acid addition in the 0th minute. The Type-2 method was sulfuric acid addition in the 0th and 30th minutes. The Type-3 method was sulfuric acid addition every 10 minutes. The results showed that the lowest residual mass of waste paper hydrolyzed was produced using the Type-3 method. This showed that the Type-3 method, sulfuric acid addition every 10 minutes, had an effect on the residual mass of the hydrolyzed sample. The Type-3 method was the most effective type of sulfuric acid catalyst addition compared to other types. On the other hand, variations in the concentration of the sulfuric acid catalyst affect the residual mass of the waste paper hydrolyzed sample, where higher sulfuric acid concentration will lower residual mass. The catalyst concentration of 2% sulfuric acid with The Type-3 addition method resulted in the highest conversion which was 38.27%.
Keywords
Full Text:
PDFReferences
H. Xu, L. Feng, G. Wu, and Q. Zhang, “Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models,” Renew. Sustain. Energy Rev., vol. 149, no. June, p. 111402, 2021, doi: 10.1016/j.rser.2021.111402.
X. Zhang et al., “High-value utilization method of digital printing waste paper fibers-Co-blending filled HDPE composites and performance improvement,” Polym. Test., vol. 116, no. July, p. 107790, 2022, doi: 10.1016/j.polymertesting.2022.107790.
I. Devichi Wibowo, P. Purwanto, and S. Suherman, “Solid waste management in the paper industry,” E3S Web Conf., vol. 202, pp. 1–7, 2020, doi: 10.1051/e3sconf/202020206026.
K. Pivnenko, E. Eriksson, and T. F. Astrup, “Waste paper for recycling: Overview and identification of potentially critical substances,” Waste Manag., vol. 45, pp. 134–142, 2014, doi: 10.1016/j.wasman.2015.02.028.
Z. Ma et al., “Material Flow Patterns of the Global Waste Paper Trade and Potential Impacts of China’s Import Ban,” Environ. Sci. Technol., vol. 55, no. 13, pp. 8492–8501, 2021, doi: 10.1021/acs.est.1c00642.
S. J. Kulkarni, “Paper Waste Recycle and Its Sludge Reduction - Towards Waste and Cost Minimization,” Int. J. Res. Rev., vol. 4, no. October, pp. 19–24, 2017, [Online]. Available: www.ijrrjournal.com
Z. U. Ozola, R. Vesere, S. N. Kalnins, and D. Blumberga, “Paper Waste Recycling. Circular Economy Aspects,” Environ. Clim. Technol., vol. 23, no. 3, pp. 260–273, 2019, doi: 10.2478/rtuect-2019-0094.
T. E. Kolajo and J. E. Onovae, “Biochemical conversion of waste paper slurries into bioethanol,” Sci. African, vol. 20, 2023, doi: 10.1016/j.sciaf.2023.e01703.
M. H. A. Rahman et al., “PRODUCT DESIGN and DEVELOPMENT of WASTE PAPER PLASTERING MORTARS MACHINE,” J. Phys. Conf. Ser., vol. 1529, no. 4, pp. 2–10, 2020, doi: 10.1088/1742-6596/1529/4/042036.
M. A. Khan, W. Mingzhi, B. K. Lim, and J. Y. Lee, “Utilization of waste paper for an environmentally friendly slow-release fertilizer,” J. Wood Sci., vol. 54, no. 2, pp. 158–161, 2008, doi: 10.1007/s10086-007-0924-6.
S. P. Gautam, P. S. Bundela, A. K. Pandey, J. Jamaluddin, M. K. Awasthi, and S. Sarsaiya, “A review on systematic study of cellulose,” J. Appl. Nat. Sci., vol. 2, no. 2, pp. 330–343, 2010, doi: 10.31018/jans.v2i2.143.
H. P. S. Abdul Khalil et al., “Production and modification of nanofibrillated cellulose using various mechanical processes: A review,” Carbohydr. Polym., vol. 99, pp. 649–665, 2014, doi: 10.1016/j.carbpol.2013.08.069.
C. Angela and P. V. P. Devanthi, “A Review on Bacterial Cellulose: Properties, Applications, Fermentative Production, and Molasses Potential as Alternative Medium,” Indones. J. Life Sci. | ISSN 2656-0682, vol. 3, no. 1, pp. 26–36, 2021, doi: 10.54250/ijls.v3i1.124.
T. Aziz et al., “A Review on the Modification of Cellulose and Its Applications,” Polymers (Basel)., vol. 14, no. 15, 2022, doi: 10.3390/polym14153206.
N. W. S. Agustini, N. Hidhayati, and S. A. Wibisono, “Effect of hydrolysis time and acid concentration on bioethanol production of microalga Scenedesmus sp.,” IOP Conf. Ser. Earth Environ. Sci., vol. 308, no. 1, 2019, doi: 10.1088/1755-1315/308/1/012029.
H. Zhang et al., “Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods,” Carbohydr. Polym., vol. 238, no. 2, p. 116180, 2020, doi: 10.1016/j.carbpol.2020.116180.
L. Xing, J. Gu, W. Zhang, D. Tu, and C. Hu, “Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I,” Carbohydr. Polym., vol. 192, pp. 184–192, 2018, doi: 10.1016/j.carbpol.2018.03.042.
Z. Y. Sun, Y. Q. Tang, S. Morimura, and K. Kida, “Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol,” Bioresour. Technol., vol. 128, pp. 87–93, 2013, doi: 10.1016/j.biortech.2012.10.082.
W. Tang, X. Wu, C. Huang, Z. Ling, C. Lai, and Q. Yong, “Natural surfactant-aided dilute sulfuric acid pretreatment of waste wheat straw to enhance enzymatic hydrolysis efficiency,” Bioresour. Technol., vol. 324, no. December 2020, p. 124651, 2021, doi: 10.1016/j.biortech.2020.124651.
N. Bujang et al., “Effect of dilute sulfuric acid hydrolysis of coconut dregs on chemical and thermal properties,” Procedia Eng., vol. 68, pp. 372–378, 2013, doi: 10.1016/j.proeng.2013.12.194.
K. J. Dussán, D. D. V. Silva, E. J. C. Moraes, P. V. Arruda, and M. G. A. Felipe, “Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse,” Chem. Eng. Trans., vol. 38, pp. 433–438, 2014, doi: 10.3303/CET1438073.
A. N. Jannah and A. M. Fuadi, “Effect of Hydrolysis Time and Sulfuric Acid Concentration on Reducing Sugar Content on Corn Cob Hydrolysis,” Chem. J. Tek. Kim., vol. 9, no. 1, p. 10, 2022, doi: 10.26555/chemica.v9i1.20637.
A. Kumar, S. Gamana, Pai, and M. R. Rebello, “Conversion of Waste Paper into Useful Bio-Products,” Res. J. Chem. Environ. Sci., vol. 4, pp. 40–42, 2016.
Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: A review,” Bioresour. Technol., vol. 83, no. 1, pp. 1–11, 2002, doi: 10.1016/S0960-8524(01)00212-7.
R. Safitri, I. D. Anggita, F. M. Safitri, and A. A. I. Ratnadewi, “Pengaruh konsentrasi asam sulfat dalam proses hidrolisis selulosa dari kulit buah naga merah (Hylocereus costaricensis) untuk produksi bioetanol,” 9th Industial Res. Work. Natl. Semin., pp. 1–5, 2018.
Y. Kurniati, I. E. Khasanah, and K. Firdaus, “Kajian Pembuatan Bioetanol dari Limbah Kulit Nanas (Ananas comosus. L),” J. Tek. Kim. Univ. Sumatera Utara, vol. 10, no. 2, pp. 95–101, 2021.
A. M. Fuadi and K. Harismah, “Perbandingan Efektifitas Pembuatan Glukosa dari Kerta Bekas Secara Hidrolisis Asam dan Enzim,” J. Teknol. Bahan Alam, vol. 1, no. 1, pp. 6–11, 2017.
Refbacks
- There are currently no refbacks.