Performance of an Air-Cooled Heat Exchanger in a Separation Unit Based on Fouling Factor and Pressure Drop

Kamilah Pathun Ni'mah, Fitriah Fitriah, Dessy Agustina Sari

Abstract

Heat exchangers transfer heat from a high temperature to a low temperature in a fluid. Air-cooled heat exchangers are one of the most widely used types of heat exchangers, after shell and tube heat exchangers. Its performance is determined by calculating the fouling factor value and the pressure drop. The purpose of this case study is to evaluate the performance of a water-cooled heat exchanger in a plant that produces a thickening agent (CMC, or carboxymethylcellulose), which affects the amount of ethanol produced. Ethanol will cool from 79.347 to 54.133 oC, and air will cool from 31.333 to 59.667 oC as the cold fluid. The calculation results show that both reviews exceed the design threshold of 0.007056 h.ft2.oF/Btu. These heat exchangers require maintenance and repair. These results differ from the pressure drop values on the air side and pipe section, which are 1.2.10-3 inH2O and 0.647 psia, respectively. Both values remain outside the allowable limits. The performance evaluation of process equipment in the separation unit was aided by field data. The review of the data was able to predict a plant shut-down. This action was able to effect a partial or total plant shut-down due to fouling and scale exceeding design data thresholds.

Keywords

aspen exchanger design; fouling factor; heat exchanger; pressure drop; carboxymethyl cellulose

Full Text:

PDF

References

N. Arif, N. Za, and A. Azhari, “Analisa pengaruh jarak antar terhadap getaran pada heat exchanger type shell and tube dengan menggunakan software Heat Transfer Reasearch Inc (HTRI),” Chemical eng. j. Storage, vol. 1, no. 1, pp. 73–83, Aug. 2021, doi: 10.29103/cejs.v1i1.4735.

R. W. Serth and T. G. Lestina, Process heat transfer: principles, applications and rules of thumb, 2nd ed. Amsterdam: Elsevier, 2014.

M. Sebayang, “Evaluasi kinerja heat exchanger dengan metode fouling faktor di laboratorium satuan operasi PTKI Medan,” Ready Star-2, vol. 2, no. 1, pp. 11–15, 2019.

B. Setyoko, “Evaluasi kinerja heat exchanger dengan metode fouling faktor,” Teknik, vol. 29, no. 2, pp. 148–153, 2008.

I. A. Setiorini and A. F. Faputri, “Evaluasi kinerja heat exchanger jenis kondensor 1110-C tipe shell and tube berdasarkan nilai fouling factor pada unit purifikasi di ammonia plant PT X,” Jurnal Teknik Patra Akademika, vol. 14, no. 01, pp. 23–30, 2023.

W. R. Iswara and A. S. Sanjaya, “Pengaruh pressure drop terhadap efektivitas heat exchanger dengan menggunakan simulator Aspen Hysys V. 7.3,” in Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia, Yogyakarta: UPN “Veteran” Yogyakarta, 2015, pp. C4-1-C4-6.

R. J. Prabaswara, S. Rulianah, C. Sindhuwati, and R. Raharjo, “Evaluasi pressure drop heat exchanger-03 pada crude distillation unit PPSDM Migas Cepu,” Distilat: J. Tekn. Sep, vol. 7, no. 2, pp. 505–513, 2023, doi: 10.33795/distilat.v7i2.287.

S. Akmal, N. Za, and I. Ishak, “Analisa profil aliran fluida cair dan pressure drop pada pipa L menggunakan metode simulasi Computation Fluid Dynamic (CFD),” j. Teknologi Kimia Unimal, vol. 8, no. 1, pp. 97–108, May 2019, doi: 10.29103/jtku.v8i1.3396.

A. N. Al Ghifary, A. N. Hasya, T. Riadz, and L. Cundari, “Evaluasi kinerja heat exchanger E-401 pada unit Pe3 PT Lotte Chemical Titan Nusantara,” Jurnal Sains dan Teknologi Reaksi, vol. 20, no. 01, pp. 1–16, 2022, doi: 10.30811/jstr.v20i01.3255.

C. Caroline and I. A. Rosid, “Pengukuran efisiensi perpindahan panas pada heat exchanger shell and tube dengan metode Log Mean Temperature Difference (LMTD),” in Conference SENATIK STT Adisutjipto Yogyakarta, Yogyakarta: Institut Teknologi Dirgantara Adisutjipto, Mar. 2022, p. Tel-279-Tel-285. doi: 10.28989/senatik.v7i0.458.

S. A. Pravitasari, F. Angestine, and P. H. Suharti, “Evaluasi kinerja alat glycol fan cooler (E-230) pada proses regenerasi glikol Minarak Brantas Gas, Inc,” Distilat: J. Tekn. Sep, vol. 6, no. 2, pp. 143–150, May 2023, doi: 10.33795/distilat.v6i2.104.

C. L. Yaws, Chemical properties handbook: Physical, thermodynamics, environmental, transport, safety, and health related properties for organic and inorganic chemicals. United States of America: McGraw-Hill Companies, 1999.

R. Handibag, D. U. Potdar, and A. Jadhav, “Thermal design of tube and shell heat exchanger and verification by HTRI software,” International Journal of Engineering Research, vol. 9, no. 12, pp. 525–530, 2020.

I. A. Fitria, D. A. Sari, V. P. Fahriani, and M. Djaeni, “Shell and tube heat exchanger fouling factor via Heat Transfer Research Inc (HTRI) software,” Reka Buana: Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 7, no. 2, pp. 104–113, 2022, doi: https://doi.org/10.33366/rekabuana.v7i2.4030.

M. Asadi and D. R. H. Khoshkhoo, “Investigation into fouling factor in compact heat exchanger,” International Journal of Innovation and Applied Studies, vol. 2, no. 3, pp. 218–229, 2013.

H. Nel, I. Lombaard, L. Liebenberg, and J. Meyer, “Fouling of an air-cooled heat exchanger; an alternative design approach,” in Proceedings of the 14th IAHR Cooling Tower and Air-Cooled Heat Exchanger Conference, Stellenbosch, South Africa, 2009, pp. 1–5. [Online]. Available: https://www.researchgate.net/publication/304570728_Fouling_of_an_air-cooled_heat_exchanger_and_alternative_design_approach

M. M. Awad, S. A. El-Samad, H. Gad, and F. Asfour, “Effect of flow velocity on the surface fouling,” Mansoura Engineering Journal, vol. 32, no. 1, pp. M27–M37, 2007.

R. Besghaier, L. Dhouibi, B. Chaouachi, and M. Jeannin, “Heat exchanger failure analysis in the simulated marine environment: Prediction of the fouling removal temperature,” Engineering Failure Analysis, vol. 122, p. 105243, Apr. 2021, doi: 10.1016/j.engfailanal.2021.105243.

S. N. Anjani, N. Za, A. Azhari, S. Bahri, and N. Sylvia, “Pengaruh kondisi operasi terhadap pembentukan fouling factor (Rd) pada kondensor 61-127-c di unit ammonia refrigerant PT Pupuk Iskandar Muda,” Chemical eng. j. Storage, vol. 3, no. 3, pp. 291–301, 2023, doi: 10.29103/cejs.v3i3.8947.

H. Hairudin and A. Mursadin, “Analisis kinerja condenser shell and tube unit 2 di PT PLN (Persero) sektor asam-asam Kalimantan Selatan,” JTAM ROTARY, vol. 3, no. 2, pp. 203–2018, 2021, doi: 10.20527/jtam_rotary.v3i2.4139.

M. Awais and A. A. Bhuiyan, “Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers,” International Journal of Heat and Mass Transfer, vol. 141, pp. 580–603, Oct. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.07.011.

D. A. Sari, I. Iksanudin, and A. Hakiim, “A case study on maintenance of overheat - spot welding machine,” in ADRI 4th International Multidiscplinary Conference and Call for Paper 2017, Universitas Negeri Jakarta: ADRI dan Universitas Negeri Jakatya, Jan. 2017, p. 442. doi: 10.31227/osf.io/9h4ct.

J. Kuchař, V. Kreibich, V. Agartanov, and M. Petřík, “Maintenance and cleaning of heat exchangers,” Material Science Forum, vol. 919, pp. 396–403, 2018.

M. P. Sutardi, M. I. Fardiansyah, F. Fauzia, and D. A. Sari, “Program simulasi Aspen Hysis bagi mahasiswa teknik kimia di semester awal,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1370–1373. doi: 10.31219/osf.io/e3t72.

M. I. Alfath, A. G. Fadzrin, M. I. Kamil, and D. A. Sari, “Praktikum mahasiswa teknik kimia unsika: teori melalui daring dan praktek di normal baru,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Tangerang: Universitas Islam Syekh Yusuf, Sep. 2020, pp. 1374–1378. doi: 10.31219/osf.io/q2ack.

I. Iyan, V. S. Ulfa, and D. A. Sari, “Pendampingan peningkatan komunikasi berbahasa Inggris bagi mahasiswa/i teknik kimia kabupaten Karawang,” in Prosiding Seminar Nasional Rekarta 2020, Mataram: Universitas Muhammadiyah Mataram, Jul. 2020, pp. 98–104.

A. Rahmatunissa, E. D. Kusumawati, F. Nulfaidah, M. Azzhara, S. Sumarsih, and D. A. Sari, “Keberlanjutan kemampuan dasar bahasa Inggris bagi mahasiswa/i teknik kimia,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, Sep. 2020, p. 171. doi: 10.31219/osf.io/5d7yc.

D. A. Sari et al., Top 33 chemical engineering essay competition (part 1). Tasikmalaya: Perkumpulan Rumah Cemerlang Indonesia, 2021. [Online]. Available: https://www.researchgate.net/publication/358356753_Top_33_Chemical_engineering_essay_competition_part_1

V. S. Ulfa, H. D. Kharisma, and D. A. Sari, “Optimasi akademisi dan mata kuliah teknik kimia melalui peran praktisi industri,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1379–1383. doi: 10.31219/osf.io/uf45p.

M. S. Rumira et al., “Personal competencies of chemical engineering student graduates before entering the world of work,” Jurnal Pendidikan Glasser, vol. 7, no. 2, pp. 423–4300, 2023, doi: 10.32529/glasser.v7i2.2897.

D. A. Sari, A. Soepryanto, and S. Burhanuddin, “Re-design electric submersible pump pada PT Chevron Pacific Indonesia – Minas Pekanbaru,” Barometer, vol. 1, no. 1, pp. 25–33, Jul. 2016, doi: 10.35261/barometer.v1i1.356.

Abstract - Print this article - Indexing metadata - How to cite item - Finding References - Email this article (Login required) - Email the author (Login required)

Refbacks

  • There are currently no refbacks.