Analysis of the Use of Modified Coal Bottom Ash as a Media for Immobilization of Microorganisms for the Production of Biogas from Macroalgae

Elli Prastyo, Puji Astuti Ibrahim, Dian Farkhatus Solikha

Abstract

Biofuel from macroalgae is referred to as the third generation biofuel because it does not require fertile land in the production process. Therefore, it is not included in the debate on the food sector. One of the process engineering in biogas production is the addition of immobilization media in anaerobic reactors. Coal combustion produces bottom ash solid waste containing 39.70% carbon (C) and 46.99% silica dioxide (SiO2) as well as other trace metals that have the potential to be used as absorbent materials or immobilization media in anaerobic decomposition. The purpose of this study was to determine the effect of the use of coal bottom ash-based immobilization media in the production of macroalgae biogas Spadina sp. The fixed variable in this study was the use of immobilization media of 30 grams, 40 grams, and 50 grams. Test parameters in the form of sCOD, VFA, biogas volume, and methane levels were used in this study. The production of macroalgae biogas Spadina sp is carried out in a fixed bed reactor with a capacity of 2000 mL with semi-batch conditions. The results showed that the highest biogas production was 204.8 mL/day with the use of immobilization media of 40 grams. The lowest biogas production is 20.5 mL/day with the use of 50 grams of immobilization media. The use of 50 grams of immobilization media is the best media to produce biogas with a high level of purity with an average of 57.48% followed by the use of 40 grams of immobilization media with an average of 41.35%, and the use of 30 grams of immobilization media with an average of 21.96%.

Keywords

biogas; bottom ash; fixed bed; immobilization; macroalgae

Full Text:

PDF

References

Y. M. Budiarja et al., “Pengaruh Aktivasi Kimia Terhadap Adsorben Fly Ash Batubara Untuk Penyerapan Polutan Emisi Gas Buang”. Jurnal Riset Teknologi Industri, 15(1), pp. 65 – 74, 2021. https://dx.doi.org/10.26578/jrti.v15i1.6880

M. Firdaus, “Indeks Aktivitas Antioksidan Ekstrak Rumput Laut Coklat (Sargassum aquifolium)”. PHPI Journal, 16(3), pp. 42 – 47, 2013. https://doi.org/10.17844/jphpi.v16i3.7956

N. K. Wardani, E. Supriyantini, and G. W. Santosa, “Pengaruh Konsentrasi Pupuk Walne Terhadap Laju Pertumbuhan dan Kandungan Klorofil-a Tetraselmis chuii,” J Mar Res, vol. 11, no. 1, pp. 77–85, Mar. 2022, doi: https://doi.org/10.14710/jmr.v11i1.31732

T. Dian Oktiana, J. Santoso, and D. M. Kawaroe, “Alga Hijau (Ulva sp.) Sebagai Bahan Baku Produksi Biogas”. Jurnal Ilmu dan Teknologi Kelautan Tropis, 7(1), pp.191 – 204. 2015. http://dx.doi.org/10.29244/jitkt.v7i1.9806

N. Mosier et al., “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresour Technol, vol. 96, no. 6, pp. 673–686, 2005, doi: https://doi.org/10.1016/j.biortech.2004.06.025

A. Bruhn et al., “Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion,” Bioresour Technol, vol. 102, no. 3, pp. 2595–2604, 2011, doi: https://doi.org/10.1016/j.biortech.2010.10.010

P. Collet, A. Hélias, L. Lardon, M. Ras, R.-A. Goy, and J.-P. Steyer, “Life-cycle assessment of microalgae culture coupled to biogas production,” Bioresour Technol, vol. 102, no. 1, pp. 207–214, 2011, doi: https://doi.org/10.1016/j.biortech.2010.06.154

D. P. Chynoweth, J. M. Owens, and R. Legrand, “Renewable methane from anaerobic digestion of biomass,” Renew Energy, vol. 22, no. 1, pp. 1–8, 2001, doi: https://doi.org/10.1016/S0960-1481(00)00019-7

E. Allen, D. M. Wall, C. Herrmann, A. Xia, and J. D. Murphy, “What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?” Energy, vol. 81, pp. 352–360, 2015, doi: https://doi.org/10.1016/j.energy.2014.12.048

M. R. Tabassum, D. M. Wall, and J. D. Murphy, “Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry,” Bioresour Technol, vol. 219, pp. 228–238, 2016, doi: https://doi.org/10.1016/j.biortech.2016.07.127

F. Almomani and R. R. Bhosale, “Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments,” Chemosphere, vol. 255, p. 126805, 2020, doi: https://doi.org/10.1016/j.chemosphere.2020.126805

A. Barakat, F. Monlau, J.-P. Steyer, and H. Carrere, “Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production,” Bioresour Technol, vol. 104, pp. 90–99, 2012, doi: https://doi.org/10.1016/j.biortech.2011.10.060.

J. P. Sitompul, A. Bayu, T. H. Soerawidjaja, and H. W. Lee, “Biodegradasi Anaerobik Biomassa Tanaman Laut dan Produksi Biogas Dalam Digester Skala Mini-Pilot”. Jurnal Teknik Kimia Indonesia, 11(4). Pp. 185 – 191. 2013. http://dx.doi.org/10.5614/jtki.2013.12.1.2

S. Montalvo et al., “Application of natural zeolites in anaerobic digestion processes: A review,” Appl Clay Sci, vol. 58, pp. 125–133, 2012, doi: https://doi.org/10.1016/j.clay.2012.01.013.

R. Ganesh, R. Rajinikanth, J. V Thanikal, R. A. Ramanujam, and M. Torrijos, “Anaerobic treatment of winery wastewater in fixed bed reactors,” Bioprocess Biosyst Eng, vol. 33, no. 5, pp. 619–628, 2010, doi: https://doi.org/10.1007/s00449-009-0387-9.

E. Prasetyo, H. Sudibyo, and W. Budhijanto, “Determination of the optimum hydraulic retention time in two-stage anaerobic fluidized bed bioreactor for landfill leachate treatment,” Journal of Engineering and Technological Sciences, vol. 49, no. 3, 2017, doi: https://doi.org/10.5614/j.eng.technol.sci.2017.49.3.7.

E. Allen, D. M. Wall, C. Herrmann, and J. D. Murphy, “Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel,” Bioresour Technol, vol. 170, pp. 436–444, 2014, doi: https://doi.org/10.1016/j.biortech.2014.08.005.

E. Kwietniewska and J. Tys, “Process characteristics, inhibition factors and methane yields of the anaerobic digestion process, with particular focus on microalgal biomass fermentation,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 491–500, 2014, doi: https://doi.org/10.1016/j.rser.2014.03.041.

H. .Møller, S. Sarker, D. Gautam, and A. Anette, Macro algae as a substrate for biogas production. The Nordic Biogas Conference-Copenhagen. 2012.

J. Teknologi Perikanan dan Kelautan, D. Fauzia Lestari, M. Kawaroe, and D. Ilmu dan Teknologi Kelautan, “PRODUKSI BIOGAS DARI MAKROALGA MERAH (Gracilaria verrucossa) PADA SISTEM BATCH”. Jurnal Teknologi Perikanan dan Kelautan, 6(2), pp. 179 – 186, 2015. http://dx.doi.org/10.24319/jtpk.6.179-186

M. Walker, Y. Zhang, S. Heaven, and C. Banks, “Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes,” Bioresour Technol, vol. 100, no. 24, pp. 6339–6346, 2009, doi: https://doi.org/10.1016/j.biortech.2009.07.018.

R. J. C. Mclean, J. S. Lam, and L. L. Graham, “Training the biofilm generation - A Tribute to J. W. Costerton,” J Bacteriol, vol. 194, no. 24, pp. 6706–6711, Oct. 2012, doi: https://doi.org/10.1128/JB.01252-12.

E. Prasetyo, H. Sudibyo, and W. Budhijanto, “Determination of the optimum hydraulic retention time in two-stage anaerobic fluidized bed bioreactor for landfill leachate treatment,” Journal of Engineering and Technological Sciences, vol. 49, no. 3, pp. 388–399, 2017, doi: https://doi.org/10.5614/j.eng.technol.sci.2017.49.3.7.

M. Alexander, D. A. Andow, and J. W. Gillett, “Fate and movement of microorganisms in the environment,” Environ Manage, vol. 10, no. 4, pp. 463–493, 1986, doi: https://doi.org/10.1007/BF01867456.

A. Karlsson, P. Einarsson, A. Schnürer, C. Sundberg, J. Ejlertsson, and B. H. Svensson, “Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and microbial populations in a biogas digester,” J Biosci Bioeng, vol. 114, no. 4, pp. 446–452, 2012, doi: https://doi.org/10.1016/j.jbiosc.2012.05.010.

A. Wresta and W. Budhijanto, “The Effect of the Addition of Active Digester Effluent for Start-up Accelerator in Anaerobic Digestion of Soybean Curd Industry Waste Water (Basic Research for Biogas Power Generation),” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 3, no. 2, pp. 81–86, Dec. 2012, doi: https://doi.org/10.14203/j.mev.2012.v3.81-86.

G. D. and V. Grilc, “Anaerobic Treatment and Biogas Production from Organic Waste,” in Management of Organic Waste, InTech, 2012. doi: https://doi.org/10.5772/32756.

F. Suryani et al., “Analisis pH dan Pengadukan Terhadap Produksi Biogas dari Limbah Cair Kelapa Sawit”. Jurnal Riset Sains dan Teknologi, 2(1), pp. 1 – 7, 2018. http://dx.doi.org/10.30595/jrst.v2i1.1855

N. Aryal, L. Feng, S. Wang, and X. Chen, “Surface-modified activated carbon for anaerobic digestion to optimize the microbe-material interaction,” Science of The Total Environment, vol. 886, p. 163985, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.163985.

O. C. Kandungan Metana, B. Kotoran Sapi Menggunakan Berbagai Jenis Adsorben Abdul Mukhlis Ritonga, and A. Mukhlis Ritonga, “Optimization Of Methana Content (CH4) Biogas of Cow Dug Using Various Types of Adsorben,” vol. 10, no. 2, p. 2017, [Online]. Available: http://www.jurnal.unsyiah.ac.id/RTP

Abstract - Print this article - Indexing metadata - How to cite item - Finding References - Email this article (Login required) - Email the author (Login required)

Refbacks

  • There are currently no refbacks.