Characterization of Biodiesel Quality from Transesterification of Palm Oil Using Homogeneous Catalysts KOH and NaOH
Abstract
Biodiesel is a renewable fuel as an alternative fuel in diesel engines. Its use can be combined with petrodiesel. Making biodiesel with a homogeneous catalyst (KOH/NaOH) requires low production costs. This research was conducted to determine the physical and chemical characteristics of biodiesel products using a homogeneous catalyst from food-grade palm oil, which was worked at room temperature, with a stirring time of 8 minutes (200 rpm), the reaction time of 4 hours with a mole ratio of methanol: oil 6:1. The results of the feasibility test for density (KOH 859 kg/m3, NaOH 868 kg/m3) and viscosity (KOH 2.70 cSt, NaOH 3.08 cSt) show that biodiesel meets the quality requirements of biofuels. FFA feasibility test results, acid number, total glycerol, saponification number, and alkyl ester content for biodiesel with KOH catalyst (0.205%, 0.3716 mg ̶ KOH/g, 0.012% ̶ mass, 58.99 mg ̶KOH/g, 99.074% ̶mass, respectively) has met the quality requirements. However, the glycerol content for NaOH has not met the quality requirements for biofuels, so it is necessary to review the optimum conditions. Further testing of biodiesel quality by applying it to diesel engines is required for production feasibility.
ABSTRAK
Biodiesel merupakan bahan bakar terbarukan sebagai alternatif bahan bakar pada mesin diesel. Penggunaannya dapat dikombinasi dengan petrodiesel. Pembuatan biodiesel dengan katalis homogen (KOH/NaOH) memerlukan biaya produksi yang murah. Penelitian ini dilakukan untuk menentukan karakteristik fisika dan kimia produk biodiesel dengan katalis homogen dari minyak kelapa sawit food grade yang dikerjakan pada temperatur kamar, waktu pengadukan 8 menit (200 rpm), waktu reaksi 4 jam dengan rasio mol methanol:minyak 6:1. Hasil pengujian kelayakan terhadap massa jenis (KOH 859 kg/m3, NaOH 868 kg/m3) dan viskositas (KOH 2,70 cSt, NaOH 3,08 cSt) menunjukkan bahwa biodiesel telah memenuhi syarat mutu bahan bakar nabati. Hasil pengujian kelayakan FFA, bilangan asam, gliserol total, bilangan penyabunan dan kadar ester alkil untuk biodiesel dengan katalis KOH (berturut-turut 0,205%, 0,3716 mg ̶ KOH/g, 0,012% ̶ massa, 58,99 mg ̶ KOH/g, 99,074% ̶ massa) telah memenuhi syarat mutu, namun untuk NaOH kadar gliserol belum memenuhi syarat mutu bahan bakar nabati sehingga perlu dikaji ulang kondisi optimumnya. Pengujian lanjutan kualitas biodiesel dengan mengaplikasikan pada mesin diesel diperlukan untuk kelayakan produksi.
Keywords
Full Text:
PDFReferences
A. Sugiyono, A. D. Permana, M. S. Boedoyo, and Adiarso, Renewable Energy Outlook 2013. Jakarta: Jakarta : Pusat Teknologi Pengembangan Sumberdaya Energi, Badan Pengkajian dan Penerapan Teknologi, 2013.
M. Prabhahar, M. K. D. Kiani, K. Bhaskar, S. Sendilvelan, S. Prakash, and L. R. Sassykova, Studies on pongamia oil methyl ester fueled direct injection diesel engine to increase efficiency and to reduce harmful emissions. Woodhead publishing, 2015.
A. Pandey, Handbook Of Plant-Based Biofuels. CRC Press, 2009.
H. Belkhanchi, M. Rouan, M. Hammi, Y. Ziat, and M. Chigr, “Synthesis of biodiesel by transesterification of used frying oils (UFO) through basic homogeneous catalysts (NaOH and KOH),” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 12858–12868, 2021, doi: 10.33263/BRIAC115.1285812868.
A. Demirbas, “Progress and recent trends in biodiesel fuels,” Energy Convers. Manag., vol. 50, no. 1, pp. 14–34, 2009, doi: 10.1016/j.enconman.2008.09.001.
C. Ragonese, P. Q. Tranchida, D. Sciarrone, and L. Mondello, “Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase,” J. Chromatogr. A, vol. 1216, no. 51, pp. 8992–8997, 2009, doi: 10.1016/j.chroma.2009.10.066.
P. Vignesh et al., “Biodiesel and green diesel generation: an overview,” Oil Gas Sci. Technol. – Rev. IFP Energies Nouv., vol. 76, no. 6, pp. 1–15, 2021, [Online]. Available: https://hal.archives-ouvertes.fr/hal-03106562.
S. Pradhan et al., “Synthesis of potassium glyceroxide catalyst for sustainable green fuel (biodiesel) production,” J. Ind. Eng. Chem., vol. 46, pp. 266–272, 2017, doi: 10.1016/j.jiec.2016.10.038.
M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga, and C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind. Eng. Chem. Res., vol. 49, no. 19, pp. 8935–8941, 2010, doi: 10.1021/ie100725f.
J. Jimmy, E. Y. Setyawan, and E. K. Rastini, “Alkali-Catalyzed Palm Oil Transesterification at Room Temperature : Effect of Stirring Time and Reaction Time,” Reka Buana J. Ilm. Tek. Sipil dan Tek. Kim., vol. 7, no. 1, pp. 63–73, 2022, doi: 10.33366/rekabuana.v7i1.3211.
T. Issariyakul and A. K. Dalai, “Comparative kinetics of transesterification for biodiesel production from palm oil and mustard oil,” Can. J. Chem. Eng., vol. 90, no. 2, pp. 342–350, 2012, doi: 10.1002/cjce.20679.
S. Sumari, A. Santoso, and M. R. Asrori, “A review: Synthesis of biodiesel from low/off grade crude palm oil on pretreatment, transesterification, and characteristics,” Orbital, vol. 13, no. 4, pp. 385–391, 2021, doi: 10.17807/ORBITAL.V13I4.1632.
Jimmy and C. Andrew, “Microwave assisted to biodiesel production from palm oil in time and material feeding frequency,” Int. J. ChemTech Res., vol. 8, no. 4, pp. 1695–1700, 2015.
G. Fikria and C. Rustana, “Analysis of the Physical Characteristics of Biodiesel Products Made From Used Cooking Oil,” J. Neutrino, vol. 14, no. 2, pp. 63–69, 2022, doi: 10.18860/neu.v14i2.14131.
T. C. Venkateswarulu et al., “Review on methods of transesterification of oils and fats in bio-diesel formation,” Int. J. ChemTech Res., vol. 6, no. 4, pp. 2568–2576, 2014.
E. Deemer et al., “Analytical Technique For Measuring Bound Glycerdes In A Biodesel Composition,” United States Pat., vol. 87, no. 12, pp. 3369–3372, 2013.
A. Santoso, Sumari, U. Urfa Zakiyya, and A. Tiara Nur, “Methyl Ester Synthesis of Crude Palm Oil off Grade Using the K2O/Al2O3 Catalyst and Its Potential as Biodiesel,” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, no. 1, 2019, doi: 10.1088/1757-899X/515/1/012042.
H. Wang, H. Tang, J. Wilson, S. O. Salley, and K. Y. S. Ng, “Total acid number determination of biodiesel and biodiesel blends,” JAOCS, J. Am. Oil Chem. Soc., vol. 85, no. 11, pp. 1083–1086, 2008, doi: 10.1007/s11746-008-1289-8.
D. Vishal, S. Dubey, R. Goyal, G. Dwivedi, P. Baredar, and M. Chhabra, “Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance,” Renew. Energy, vol. 158, pp. 167–180, 2020, doi: 10.1016/j.renene.2020.05.136.
E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, “Synthesis of biodiesel via acid catalysis,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5353–5363, 2005, doi: 10.1021/ie049157g.
A. Hayyan, M. Ali Hashim, F. S. Mjalli, M. Hayyan, and I. M. AlNashef, “A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil,” Chem. Eng. Sci., vol. 92, pp. 81–88, 2013, doi: 10.1016/j.ces.2012.12.024.
EBTKE Indonesia, “KEPDIRJEN EBTKE Standar dan Mutu Mutu (Spesifikasi) Bahan Bakar Nabati (Biofuel) Jenis Biodiesel Sebagai Bahan Bakar Lain yang Dipasarkan di Dalam Negeri,” 2022, [Online].
M. F. Jauhari and R. S. Maryati, “Analisa Perbandingan Kualitas Biodiesel Dari Minyak Jelantah Berdasarkan Perbedaan Penggunaan Jenis Reaktor,” J. INTEKNA, vol. 18, no. 1, pp. 31–39, 2018.
M. Mofijur, M. G. Rasul, N. M. S. Hassan, H. H. Masjuki, M. A. Kalam, and H. M. Mahmudul, “Assessment of physical, chemical, and tribological properties of different biodiesel fuels,” Clean Energy Sustain. Dev. Comp. Contrasts New Approaches, pp. 441–463, 2017, doi: 10.1016/B978-0-12-805423-9.00014-4.
Rahmawati, A. Noor, Maming, and M. Zakir, “Quality analysis of Biodiesel from Palm Oil,” Mar. Chim. Acta Int. J., 2016.
Refbacks
- There are currently no refbacks.