Hydrolysis Kinetics of Bacterial Cellulose Using Sodium Hydroxide

Jabosar Ronggur Hamonangan Panjaitan, David Andrian Padang, Aziz Fatchurohman, Fourka Fitra Ramadhan


The hydrolysis reaction is a rupture reaction of reactants with water which is generally used to produce useful derivative products and can be reviewed for kinetics as a basis for reactor design. Nata or bacterial cellulose is a compound consisting of pure cellulose and water so that it can be hydrolyzed to produce various cellulose degradation products. This research examined the kinetic hydrolysis of bacterial cellulose using a sodium hydroxide catalyst. This study aimed to determine the kinetic parameters of the nata hydrolysis reaction using a base sodium hydroxide catalyst. The results showed higher temperatures and longer hydrolysis time performed better in hydrolysis reactions. The hydrolysis kinetics in this study were divided into two types, Type 1 hydrolysis kinetics which used the wet weight of bacterial cellulose, and Type 2, which used the dry weight of bacterial cellulose. From the calculation results, the order of bacterial cellulose hydrolysis reaction ranges from 5 – 6, with the kinetic constants of Type 1 hydrolysis kinetics at 40oC, 60oC, and 80oC were 0.000012, 40,255.4, and 299,839 min-1. In comparison, the reaction constants of Type 2 hydrolysis kinetics at 40oC, 60oC, and 80oC were 0.516851, 1.124119, and 2.408972 min-1. The activation energy of Type 1 hydrolysis kinetics was 558.3932 kJ/mol, and Type 2 hydrolysis kinetics was 35.31205 kJ/mol. The difference in kinetic parameter values for Types 1 and 2 will be a reference in designing a nata hydrolysis reactor from wet and dry nata reactants to produce various cellulose degradation compounds.


Reaksi hidrolisis merupakan reaksi pemecahan reaktan dengan air yang umumnya dilakukan untuk memproduksi produk – produk turunan bermanfaat dan dapat ditinjau kinetikanya sebagai dasar dalam perancangan reaktor. Nata atau selulosa bakteri merupakan senyawa yang terdiri dari selulosa murni dan air sehingga dapat dihidrolisis untuk menghasilkan berbagai senyawa degradasi selulosa. Pada penelitian ini diteliti kinetika hidrolisis selulosa bakteri menggunakan katalis natrium hidroksida. Tujuan dari penelitian ini adalah untuk menentukan parameter kinetika reaksi hidrolisis nata menggunakan katalis basa natrium hidroksida. Hasil penelitian menunjukkan bahwa semakin tinggi suhu dan lama waktu hidrolisis akan meningkatkan kinerja reaksi hidrolisis. Kinetika hidrolisis pada penelitian ini terbagi dua tipe yaitu kinetika hidrolisis Tipe 1 yang menggunakan berat basah selulosa bakteri dan dan Tipe 2 yang menggunakan berat kering selulosa bakteri. Dari hasil perhitungan diperoleh orde reaksi hidrolisis selulosa bakteri berkisar antar 5 – 6 dengan konstanta reaksi kinetika hidrolisis Tipe 1 pada suhu 40oC, 60oC dan 80oC berturut – turut adalah 0,000012; 40.255,4; dan 299.839 min-1. Sedangkan konstanta reaksi kinetika hidrolisis Tipe 2 pada suhu 40oC, 60oC dan 80oC berturut – turut adalah 0,516851; 1,124119; dan 2,408972 min-1. Energi aktivasi kinetika hidrolisis Tipe 1 sebesar 558,3932 kJ/mol, dan energi aktivasi kinetika hidrolsis Tipe 2 sebesar 35,31205 kJ/mol. Perbedaan nilai parameter kinetika pada Tipe 1 dan 2 akan menjadi acuan dalam perancangan reaktor hidrolisis nata berbahan baku nata basah dan kering untuk memproduksi berbagai senyawa degradasi selulosa.


cellulose; hydrolysis; kinetics

Full Text:



P. Ross, R. Mayer, and M. Benziman, “Cellulose Biosynthesis and Function in Bacteria,” Microbiol. Mol. Biol. Rev., vol. 55, no. 1, pp. 35–58, 1991.

I. Sulaeva, U. Henniges, T. Rosenau, and A. Potthast, “Bacterial cellulose as a material for wound treatment: Properties and modification. A Review,” Biotechnology Advances, Vol. 33(8), pp 1547 – 1571, 2015.

G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. Souza, A.A. Martin, R. Silva, R.A. Freitas, “Bacterial cellulose in biomedical applications: A review,” International Journal of Biological Macromolecules, Vol. 104, pp. 97 – 106, 2017.

R.T. Bianchet, A.L.V. Cubas, M.M. Machado, and E.H.S. Moecke, “Applicability of Bacterial Cellulose in Cosmetics – Bibliometric Review,” Biotechnology Reports, Vol. 27, e00502, 2020.

N. Sriplai, and S. Pinitsoontorn, “Bacterial Cellulose-based Magnetic Nanocomposites: A Review,” Carbohydrate Polymers, Vol. 254, 117228, 2021.

W.Czaja, A. Krystynowicz, S. Bielecki, and R.M. Brown Jr, “Microbial Cellulose—The Natural Power to Heal Wounds,” Biomaterials, vol. 27, no. 2, pp. 145–151, 2006.

J. Wang, J. Tavakoli, and Y. Tang, “Bacterial cellulose production, properties and applications with different culture methods – A review,” Carbohydrate Polymers, Vol. 219, pp 63-76, 2019.

M.L. Foresti, A. Vazquez, and B. Boury, “Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances,” Carbohydrate Polymers, Vol. 157, pp. 447-467, 2017.

R. Safitri, I. D. Anggita, F. M. Safitri, and A. A. I. Ratnadewi, “Pengaruh Konsentrasi Asam Sulfat Dalam Proses Hidrolisis Selulosa dari Kulit Buah Naga Merah (Hylocereus costaricensis) Untuk Produksi Bioetanol,” 9th Industial Research Workshop and National Seminar, pp. 1–5, 2018.

E. Kriswiyanti, “Pengaruh Jenis dan Konsentrasi Asam Terhadap Kinetika Reaksi Hidrolisis Pelepah Pisang (Musa Paradisiaca L),” Ekuilibrium, Vol. 11, No. 2, pp. 73–77, 2012.

C.J. Knill, and J.F. Kennedy, “Degradation of Cellulose Under Alkaline Conditions”, Carbohydrate Polymers 51, 281 – 300, 2003.

I. Pavasars, J. Hagberg, H. Boren, and B. Allard, “Alkaline Degradation of Cellulose: Mechanisms and Kinetics”, Journal of Polymers and The Environment, Vol. 11, No. 2, 39 – 47, 2003.

S. Yin, A.K. Mehrotra, and Z. Tan, “Alkaline Hydrothermal Conversion of Cellulose to Bio-oil: Influence of Alkalinity on Reaction Pathway Change”, Bioresource Technology 102, 6605 – 6610, 2011.

L. Testova, K. Nieminen, P.A. Penttila, R. Serimaa, A. Potthast, and H. Sixta, “Cellulose Degradation in Alkaline Media Upon Acidic Pretreatment and Stabilisation,” Carbohydrate Polymers, Vol. 100, 185-194, 2014.

G. Bali, X. Meng, J.I. Deneff, Q. Sun, and A.J. Ragauskas, “The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility,” ChemSusChem 0000, 00, 1-5, 2014.

Q, Li, A. Wang, W. Ding, and Y. Zhang, “Influencing Factors for Alkaline Degradation of Cellulose,” Bioresource 12(1), 1263 – 1272, 2017.

H.A.L. Amir, “Oxidative Reactions of Cellulose under Alkaline Conditions,” Faculty of Mathematics and Science, University of JYVASKYLA, 2020.

H. S. Fogler, “Elements of Chemical Reaction Engineering, 4th Edition,” New Jersey: Prentice Hall, 2006.

T. A. Sutrisno, H. Suryanto, R. Wulandari, M. Muhajir, S. M. S. N. S. Zahari, “The Effect of Chemical Pretreatment Process on Mechanical Properties and Porosity of Bacterial Cellulose Film,” Journal of Mechanical Engineering Science and Technology, vol. 3, no. 1, pp. 8 – 17, 2019.

J. R. Colvin and G. G. Leppard, “The Biosynthesis of Cellulose by Acetobacter Xylinum and Acetobacter Acetigenus,” Can. J. Microbiol., vol. 23, no. 6, pp. 701–709, 1977.

Abstract - Print this article - Indexing metadata - How to cite item - Finding References - Email this article (Login required) - Email the author (Login required)


  • There are currently no refbacks.