Perbandingan Laju Lindi Landfill Kelas I dan II untuk Limbah NORM dari Industri Minyak dan Gas Bumi Menggunakan Model Hydrologic Evaluation of Landfill Performance (HELP)
Abstract
In the process of oil and gas production, it can produce large amounts of Naturally Occurring Radioactive Materials (NORM) with increased radioactivity as by-products. NORM disposal methods currently used in the oil & gas industry are landfills, land-spreading, surface burial, underground injection, off-shore discharge. The biggest threat to groundwater caused by landfills is leachate. This study is a comparison of the leachate rates of Class I and Class II Landfill results using the Hydrologic Evaluation of Landfill Performance (HELP) modeling software developed by the United States Environmental Protection Agency (US EPA). For the operational phase, there were significant differences in leachate rate from the base layer between Class I and Class II landfills. For the phase after closure of waste, Class I and Class II landfills have the same performance in terms of holding back the rate of leachate.
ABSTRAK
Dalam proses produksi minyak dan gas dapat menghasilkan sejumlah besar Naturally Occurring Radioactive Materials (NORM) dengan konsentrasi radioaktivitas yang meningkat sebagai limbah hasil samping. Metode pembuangan NORM yang saat ini digunakan dalam industri minyak & gas adalah landfill, land-spreading, surface burial, underground injection, off-shore discharge. Ancaman terbesar terhadap air tanah yang ditimbulkan oleh landfill adalah air lindi. Pada penelitian ini akan dilakukan perbandingan laju lindi landfill Kelas I dan Kelas II berdasarkan hasil menggunakan software pemodelan Hydrologic Evaluation of Landfill Performance (HELP) yang dikembangkan oleh United States Environmental Protection Agency (US EPA). Untuk fase operasional ditemukan perbedaan laju lindi dari lapisan dasar yang signifikan antara landfill Kelas I dan Kelas II. Untuk fase setelah penutupan limbah, landfill kelas I dan kelas II memiliki kinerja yang sama dalam hal menahan laju produksi air lindi.
Kata kunci : NORM; landfill; lindi; HELPKeywords
Full Text:
PDFReferences
Doyi, I.N., Essumang, D.K., Dampare, S.B., & Glover, E.T. (2016). Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review. Reviews of environmental contamination and toxicology, 238, 107-119.
Ali, Kamal K., Shafik, Shafik Sh., Husain, Husain A. (2017). Radiological Assessment of NORM Resulting From Oil and Gas Production Processing in South Rumaila Oil Field, Southern Iraq. Iraqi Journal of Science, 2017, Vol. 58, No.2C, pp: 1037-1050.
Husain, H., Sakhnini, L. (2016) Radiological impact of NORM generated by oil and gas industries in the kingdom of Bahrain. Journal of Environmental Radioactivity xxx (2016) 1-7, http://dx.doi.org/10.1016/ j.jenvrad.2016.12.004.
International Association of Oil & Gas Producers (OGP). (2008). Guidelines for the management of Naturally Occurring Radioactive Material (NORM) in the oil & gas industry, Report 412. London, UK.
Peraturan Pemerintah Republik Indonesia No. 101 Tahun 2014 Tentang Pengelolaan Limbah Bahan Beracun dan Berbahaya (B3).
Kementerian Lingkungan Hidup dan Kehutanan. (2016). Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor P.63/Menlhk/Setjen/KUM.1/7/2016 tentang Persyaratan dan Tata Cara Penimbunan Limbah Bahan Berbahaya dan Beracun di Fasilitas Penimbusan Akhir. Jakarta-Indonesia, KLHK.
Hughes, K. Christy, A. Heimlich, J. (2018). Landfill Types and Liner Systems. Ohio State University Extension Fact Sheet CDFS-138-05. http://ohioline.osu.edu (2018).
Youcai, Zhao. (2018). Leachate Generation and Characteristics. Pollution Control Technology for Leachate from Municipal Solid Waste 2018, Pages 1-30.
El-Fadel, M., Findikakis, A. N., Leckie, J. O. (1997). Modeling Leachate Generation and Transport in Solid Waste Landfills. Environmental Technology, 18:7, 669-686.
São Mateus, MSC., Costa, MS., Machado, SL. (2012). An attempt to perform water balance in a Brazilian municipal solid waste landfill. Waste Management 32: 471–481.
Yong, Raymon N., Mulligan, Catherine N., Fukue, Masaharu. (2015). Sustainable Practices in Geoenvironmental Engineering. CRC Press Taylor & Francis Group, Boca Raton.
Butt, T.E., Alam, A., Gouda, H.M., Paul, P., Mair, N. (2016). Baseline study and risk analysis of landfill leachate – Current state-of-the-science of computer aided approaches. Sci Total Environ (2016).
Frikha,Youssef., Fellner, Johann., Zairi, Moncef. (2017). Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia. Waste Management & Research 1–9.
Alslaibi,Tamer M., Abustan, Ismail., Mogheir, Yunes K., Afifi, Samir. (2013). Quantification of leachate discharged to groundwater using the water balance method and the Hydrologic Evaluation of Landfill Performance (HELP) model. Waste Management & Research 31(1) 50–59.
Bou-Zeid, E., El-Fadel, M. (2004). Parametric sensitivity analysis of leachate transport simulations at landfills. Waste Management 24 (2004) 681–689.
Schroeder, P.R., Aziz, N.M., Lloyd, C.M., Zappi, P.A.(1994). The Hydrologic Evaluation of Landfill Performance (HELP) Model. User’s Guide for Version 3. EPA/600/R- 94/168a. US EPA Risk Reduction Engineering Laboratory. Cincinnati, Ohio, 84 p. and appendix.
Berger, Klaus U. (2015). On the current state of the Hydrologic Evaluation of Landfill Performance (HELP) model. Waste Management 38 (2015) 201–209.
Hassan, Zulkarnain., Shamsudin, Supiah., Harun, Sobri., (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and Applied Climatology April 2014, Volume 116, Issue 1–2, pp 243–257.
Osman, Yassin., Al-Ansari, Nadhir., Abdellatif, Mawada., Aljawad, Sadeq B., Knutsson, Sven. (2014). Expected Future Precipitation in Central Iraq Using LARS-WG Stochastic Weather Generator. Engineering 6, 948-959.
Karimi, Sepideh., Karimi, Saeed., Yavari, Ahmad Reza., Niksokhan, Mohamad Hosein. (2015). Prediction of Temperature and Precipitation in Damavand Catchment in Iran by Using LARS –WG in Future. Earth Sciences. Vol. 4, No. 3, 2015, pp. 95-100.
Refbacks
- There are currently no refbacks.