RESPON MORFOLOGI DAN PRODUKSI TANAMAN KEDELAI (Glycine max L.) TERHADAP PENGGUNAAN BERBAGAI DOSIS ASAM SALISILAT DALAM CEKAMAN SALINITAS

Ramadhan Cakra Narayana, Syaiful Anwar, Karno Karno

Abstract

This study aimed to examine the effect of exogenous salicylic acid treatment and salinity stress on the morphology and seed yield of soybeans (Glycine max L.). The experimental design used a completely randomized design factorial with four replications. The first factor was Salicylic Acid with four different dosages, namely 0 ppm, 100 ppm, 200 ppm, and 300 ppm. The second factor was Salinity Stress with two levels, 0 dS/m, and 5 dS/m. The observed parameters were root volume, plant height, total leaf area, root shoot ratio, and seed weight. The result showed that plant height, total leaf area, root volume, and root-shoot ratio were not significantly affected by salicylic acid treatment. Seed weight showed an increase in salicylic acid treatment. Salinity stress reduced all morphological size and seed yields of soybeans significantly.

Keywords

Dosages; morphology; salicylic acid; salinity stress; soybean

Full Text:

PDF

References

Abriz, S. F., & Golezani, K. G. 2016. Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. Journal of Applied Botany and Food Quality. 89, 243-248.

Abriz, S. F., & Golezani, K. G. 2018. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety. 147 (2018), 1010–1016.

Abriz, S. F., Alaee, T., & Tavasolee, A.. 2019. Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere. 9 (2019), 69-71.

Ahmad, I., Basra, S. M. A., Afzal, I., Farooq, M., & Wahid, A. 2013. Stand establishment improvement in spring maize through exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide. Int. J. Agric. Biol. 15, 95-10.

Amirjani, M. R., 2010. Effect of salinity stress on growth mineral composition proline content antioxidant enzymes of soybean. American Journal of Plant Physiology. 5 (6), 350-360.

Asghari, M., & Aghdam, M. S. 2010. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science and Technology. 21, 502-509.

Cao, C. F., Li, X. J., Yu, L. R., Shi, X. K., Chen, L. M., & Yu, B. J. 2018. Foliar 2,3-dihydroporphyrin iron (III) spray confers ameliorative antioxidation, ion redistribution and seed traits of salt-stressed soybean plants. Journal of Soil Science and Plant Nutrition. 18 (4), 1048-1064.

Cuevas, J., Daliakopoulos, I. N., Moral, F. D., Hueso, J. J., & Tsanis, I. K. 2019. A review of soil-improving cropping systems for soil salinization. Agronomy. 9 (295).

Dolatabadian, A., Modarressanavy, S. A. M., & Ghanati, F. 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not. Sci. Biol. 3(1), 41-45.

Gorni, P. H., & Pacheco, A. C. 2016. Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. Afr. J. Biotechnol. 15 (16), 657-665.

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. 2013. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany. 64 (8), 2255-2268.

Jayasumarta, D. 2012. Pengaruh sistem olah tanah dan pupuk P terhadap pertumbuhan dan produksi tanaman kedelai (Glycine max L. Merill). Agrium. 17 (3), 148-154.

Kaur, J., Ram, H., Gill, B. S., & Kaur, J. 2015. Agronomic performance and economic analysis of soybean (Glycine max) in relation to growth regulating substances in Punjab India. Legume Research. 38 (5), 603-608.

Khan, N. A., Syeed, S., Masood, A., Nazar, R., & Iqbal, N. 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology. 1 (1), 1-8.

Kong, J., Dong, Y., Xu, L., Liu, S., & Bai, X. 2014. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Botanical Studies. 55:9.

Koo, Y. M., Heo, A. Y., & Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal. 36 (1), 1-10.

Kristiono, A., Purwaningrahayu R. D., & Taufiq, A. 2013. Respons tanaman kedelai kacang tanah dan kacang hijau terhadap cekaman salinitas. Buletin Palawija. (26), 45-60.

Liu, H., Song, J., Dong, L., Wang, D., Zhang, S., & Liu, J. 2017. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. J. Plant. Res. 130 (4), 723-733.

Motos, J. R. A., Ortuno, M. F., Vicente, A. B., Vivancos, P. D., Blanco, M. J. S., & Hernandez, J. A. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7 (18).

Pankova, E. I., Vorobieva, L. A., Balyuk, S. A., Khasankhanova, G. M., Konyushkova, M. V., & Yamnova, I. A. 2018. Chapter 1 Salt-affected soils of the Eurasian Region: diagnostics, criteria and distribution. Handbook for Saline Soil Management. FAO.

Purwaningrahayu, R. D. & Taufiq, A.. 2017. Respon Morfologi Empat Genotip Kedelai Terhadap Cekaman Salinitas (Morphological Responses of Four Soybean Genotypes to Salinity Stress). Jurnal Biologi Indonesia. 13(2), 175-188.

Shrivastava, P. & Kumar, R. 2015. Soil salinity: a serious environmental issue

and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22, 123-131.

Simaei, M., Nejad, R. A. K., Saadatmand S., Bernard F., & Fahimi H. 2011. Interactive effects of salicylic acid and nitric oxide on soybean

plants under NaCl salinity. Russian Journal of Plant Physiology. 58 (5), 783-790.

Simbolon, R., Kardhinata, E. H., & Husni, Y. 2013. Evaluasi toleransi tanaman kedelai (Glycine max (l.) merrill) generasi m3 hasil radiasi sinar gamma terhadap salinitas. J. Online Agroekoteknologi. 1 (3), 590-603.

Vicente, M. R. S., & Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany. 62 (10), 3321–3338.

Abstract - Print this article - Indexing metadata - How to cite item - Finding References - Email this article (Login required) - Email the author (Login required)

Refbacks

  • There are currently no refbacks.